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Preface

This work is the result of my attempt during course
work at and after separation from AFIT to define a
tradeoff between time-to-turn and final specific energy
for an aircraft with high specific power. I am indebted
to Capt James Rader, my thesis advisor for getting me
started, to Mr. Elisha Rachovitsky and Mr. Gerald M.
Anderson for their encouragement and advice and to my
family and friends for their continued moral support.
Special thanks are in order for my wife, Lucy, who has
admirably withstood these past seven years, and to the
Trinity, for the Light in this age of Darkness. Amen

Steven B, Dron
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& Abstra
T8y The report deals with a tradeoff between time-to-turn
:_‘ and the change in specific energy during a turn of 180°,
\\ for an aircratt of high specific pover. This type of
}\. aircraft possesses the capability to sustain flight at
the corner velocity wvhere the aircraft flies at maximum
1ift coefficient and maximum load factor simultaneously.
"‘n. However, the classical necessary conditions breakdown on
this corner velocity arc and an addition constraint set
must be defined to determine the optimal control
histories. The report firast defines the necessary
conditions for a generic optimal control formulation with
two state-dependent inequality constraints and then
1:.:‘:1 applies the formulation to a high specific power aircraft
v problem. The result is a three-point boundary value
\ problem including a discontinuous interior corner time at
::::‘ the beginning of sustained corner velocity flight. All
:_7; state and costate derivatives and end conditions are
‘ presented with numerical methods for determining minimum
_‘;?-3. time, maximum energy and maximum energy gradient
: solutions. Anticipated results are provided for the
: formulations beginning at initial conditions both above
o and below the corner velocity. Results are presented for
!' the minimum time solution only. Recommendations for
further vork in this same area are also provided.
5
Age 0
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HIGH SPECIFIC POWER AIRCRAFT TURN
ey MANEUVERS: TRADEOFF OF TIME-TO~TURN
I VERSUS CHANGE IN SPECIFIC ENERGY
I. INTRODUCTION
Since World war I, great strides have been made in
the field of energy management of combat aircraft. Most
of the presently used tactics were developed during the
early portion of this century, but their detailed
explanation and simulation has only been accomplished in
the past 25 years. As more progress is made in aircraft
design and capabilities, new avenues of research in
energy management are opened for examination.
Much work has been done in the areas of fuel and
N energy management for fighter aircraft of the 1960's thru
(:- 1970's vintage, particularly the area of minimum time-to-
turn. In research of any particular aircraft's minimum-
‘f; time turn performance, a solution is sought whereby the
. angle of attack, bank angle and throttle histories create
an exchange of potential and kinetic energy to produce
the highest turn rate possible at all points in time.
For every aircraft, there 1is a velocity which is a
function of altitude, at which the maximum possible turn
rate occurs. It is that airspeed at which maximum 1lift
coefficient and maximum load factor occur simulataneously
and it is known as the corner velocity. Beginning at a
particular initial airspeed and altitude, flying as close

as possible to this velocity at all times gives the

?I’ minimum time turn for that aircraft.
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Historically, aircraft have possessed excessive

weight and 1induced drag and insufficient thrust to

o sustain flight at their corner velocities although they
'Q can instantaneously pass through this condition during a
. maximum performance maneuver. However, as technology

advances, lighter, more aerodynamically efficient
aircraft with increased thrust are developed which can
ﬁ more closely approximate sustained corner velocity
flight.

In the near future, fighter aircraft may produce more
than the minimum required specific power to sustain
corner velocity flight and will be able to achieve the
maximum possible turning rate at less than maximum
throttle setting. Should this capability exist for a
particular aircraft, it would be of interest to examine

the tradeoff between time allotted to complete a 180°

T " (RN

velocity vector heading change and the resultant specific
energy change at the end of the turn, for turns that
begin both below and above the corner velocity. The
examination of this tradeoff and the set of optimal
_ control histories which produce it is the objective of
3 this thesis.

This work is an extension of the work done by
Humpiireys (Ref 5) and Anderson (Ref 1). In this effort,
the aircraft model of Humphreys and the kinematic optimal

control equations developed by Anderson are blended with

S desired initial and final €flight conditions to form a
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. pair of Three Point Boundary Value Problems (TPBVP); one
for minimum time (free final time) and one for maximum

energy gain (fixed final time). From these formulations,

the tradeoff is determined.
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II. Statement of the Problem

Connection of Energy and Time in a Turn

As stated in the introduction, the objective of this
thgsis is to exarine the tradeoff between time to
complete a 1800 velocity vector heading change and the
resultant specific energy change from the beginning of
the turn to the end. Therefore, the tradeoff criterion
between energy and time must be defined.

The total energy of an aircraft is the sum of its

potential and kinetic energy components and can be stated

as:
RS Ep = mgh + kmv2 (2-1)

2 c vhich has units of foot-pounds. The specific energy, or

iq ° the energy altitude of an aircraft is the total energy

: per pound of aircraft weight and can be expressed as:
E=h+ V2 (2-2)

29

which has units of feet. If an aircraft begins a turn

vith some initial specific energy, Ej, the effects of

climbing and diving, drag and thrust application will

: transition the initial aircraft energy state to a final

qi energy state, Eg, in a time, tg.

.' Por a minimum time turn, energy is sacrificed for the

sake of continuous maximum turn rate. In this case, the

. 7 final energy Epjip vill be the lowest final energy of any
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of the turns to be examined and it will occur at a time
tpin, the minimum time to turn to the final conditions.
If the time allotted to turn is increased to tf > tpin:
then the opportunity exists to perform the same turn in a

more energy conscious manner and therefore, Egf > Enip.

The more time allotted for the turn, the more energy can

be conserved or gained.

Definition of the Tradeoff

It is postulated that a final specific energy, Birade’
occurring at a final time tirade ¥ill maximize the

specific energy gradient defined as:

g = °f = Ey (2-3)
te

Btrader titrade and EGpax ¢an be graphically or
numerically determined by a line, eminating from Ej at
t=0 being placed tangent to a final specific energy
versus final time plot. This is qualitatively shown in
Fig 2-1. An additional method for determining EGpax is
to plot the energy gradient versus final time and pick
the maximum value. This can be seen from Fig 2-2,

The determination of tyrader Etrade and therefore
EGpax for turns beginning at equal specific energy
states, both below and above the corner velocity, is the
goal of this effort. This could be done using a single

problem formulation, such as maximize EG, instead of

S ST L R G R T Crr G et
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o defining a minimum time turn and several maximum energy
turns, but it would not be as useful a result for
comparative purposes as the formulation chosen. This

method unambiguously determines the time-energy tradeof€f.
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e III. Generic Optimal Control Formulation

The system to be optimally controlled will be
represented by the dynamic differential system (Ref 1)

x = £(x,u,t) (3-1)
with initial and final time conditions
X(to) = Xg » K[x(tf),tf] -0 (3-2)

Both x and x are n-dimensional state vectors, u is an m-
fﬁ dimensional control vector, K is an s-dimensional vector
of final conditions and t represents time. The problem
objective is to transfer the system from the initial
conditions to the final conditions while minimizing the

(;“ Bolza form payoff function
J = GJX(tf)rtf] + UTK[x(tf)rtf]
+~[n [F(x,u,t) + AT(f-i)]dt (3-3)
To

G is a scalar function of final time and final time state
conditions and F is a scalar integral function subject to
state and control values and time. The vector vT is an
s-dimensional constant Lagrange multiplier vector, and
AT is an n-dimenional Lagrange multiplier costate vector
otherwise known as the influence function vector. The

Hamiltonian is expressed as:

H(x,u,t) = F(x,u,t) + ATf(xlult) (3-4)

SR,
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Y The control vector, u, is subject to both non-state-
“ dependent and state-dependent inequality constraints.
The non-state dependent constraints do not affect the
control formulation, only the control vector bounds.

They will be considered separately in section 4. For the

'ﬁl class of problems discussed here, it is postulated that
-the ith element of the control vector is subject to two

state-dependent inequality constraints
Cr(x,uj,t) € 0, Ca(x,ui,t) & 0 (3-5)

Adjoining these constraints to the Hamiltonian, {t

R becomes

H = F(x,u,t) + ATE(x,u,t) + p1C1(x,ui,t)

&;} + M2C2(x,uq,t) (3-6)
'

ﬁg where u) and uj are scalar Lagrange multipliers. The
Y

\;‘ conditions on u1 and uy are

& Ui = 0 i€ C4( t) S 0

; 't - x'ui'
g 3 3 =1,2 (3-7)
§5§ My £ 0 if Cj(x,uj,t) =0 ;
.2 ‘
% i€, and only if, both C; and Cy are not both zero
?ﬁi simultaneously. If only one constraint is zero at any
133 time, applying the Euler-Lagrange optimality condition,

Z ot

"

Hy = 0 (3-8)
r‘.:t

iy produces the impulse response functions and the non-zero
;g; e value of M4 can be found from the relationship

O "
L e 10
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1= Hug = Puy + ATfuy + u4Cquy = 0§ = 1,2 (3-9)

However, 1if both state-dependent inequality constraints

are zero simultaneously, Eq (3-9) becomes
Huj = Pug + ATEuj + u43Cluj + M2C2uy = 0 (3-10)

as Eq (3-10) is the only equation which yields values for
M1 or M3, unique solutions for u3 and u2 cannot be
obtained with one equation and two wunknowns, and
alternate solution must be sought.

The solution selected is to form a new state
dependent equality constraint from both C; and C3
simultaneously equaling zero (Ref 1:182, 2:2247, 3:117).

This new constraint has the form

<

S(x,t) =0 (3-11)

However, this constraint is not explicitly a function of
the control vector and the optimal controls cannot be
found from this expression. Using the techniques of (Ref
3:118), it is found that the qth time derivative of Eq
(3-11) produces a constraint containing elements of the

control vector. This new constraint
s{d)(x,u,t) = 0 (3-12)

is known as a singular arc and may now be adjoined to Eq

(3-6) to form the new Hamiltonian
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P ALl

R H = F(x,u,t) + ATE(x,u,t) + P1C1(%,uj,t)
+M2Ca(x,ui,t) + w3s()(x,u,t) (3-13)

For this new formulation, it should be understood that
Eqs (3-7) are still valid if only one constraint is zero
" at a time. If both C; and C; are zero simultaneously,
then Eg (3-11) is satisfied and u; and u; are defined to
both be zero. The unique value for M3 is determined by

applying Eq (3-8) to Eq (3-13) which produces
Hu = Fu + ATfu + p35,(2) = 0 (3-14)

In addition to the singular arc constraint, q
-, interior point constraints have been generated which must
be adhered to at the beginning and end of the arc, and

Qo are represented in vector form as
M= [s, 8y voee s(q-l)] =0 (3-15)

The Hamiltonian, H, and the costate variables, AT are
X discontinuous at the beginning of the arc, but continuous
at the end (Ref 2:2248). If the discontinuity, or
{ corner, happens at time t,, then the shifts in the values
of H and AT are the differences between their values just

. before and after to and can be expressed as

H(te=) = H(tg+) -~ NTMg | ¢ = tg (3-16)

AT(te=) = AT(te+) + ™y | ¢ = tg (3-17)

where 7T is a g-dimensional constant Lagrange multiplier

R A A e e
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P

- .

vector. The values of nT are found by simultaneously

solving Eq (3-16) and Eg (3-17).

f P o puan
PR .

In summary, given the system and conditions of Egs

‘n"i“v‘t’n.

(3-1) and (3-2), the payoff function of Eq (3-3) becomes

PR

' J =g+ vTk

+/;:' [F + AT(f-%) + pT(cl,Cz,S(CI))] dt (3-17)

w, ,

and the Hamiltonian 1is expressed by Eq (3-12). The
:A optimal controls are found by applying Eq (3-8) to Bgq (3-

. 13) subject to the constraints of Egs (3-7), those

following EBq (3-13), and insuring satisfaction of the
)

Legendre-Clebsch condition

HyTy 20 (3-18)
- The costate differential equations equal -Hy and are
o AT = =(Py + ATEy + M1C1, + MaCa, + M3Sy(D))  (3.19)

Application of the transversality conditions yield the

- final time values of the costates and Hamiltonian to be

AT(tg) = Gx[x(tg),tf]+ DTKx[x(tf),tf] (3-20)
3 Hite) = -Gefx(te) te]- vTRe [xep), e (3-21)

which completes formation of the three point boundary

L Sl S
B 3™

value problem (TPBVP). Eq (3-21) applies only to the

free final time problem. The interior point constraints

ot

of Eq (3-15) and the corner discontinuities of Eq (3-16)

13
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and Eq (3-17) must also be satisfied when switching onto

or off of the singular arc of Eq (3-12) at the corner

time, tco
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]
‘: ‘ﬁ‘- IV. Specific Optimal Control Formulation

Point Mass Aicrcraft System Definition

To satisfy EBq (3-1), the alrcraft for both minimum

time and maximum final energy turn problems will be
represented by the following point mass equations of
motion (Ref 12)
3 X = vV cosy cosy (4-1a)
3 Y =V cosysinyg (4-1b)
h =V siny (4-1c)
V= g[zzr_D - sin)’] (4-14)
g W
. Y = 9|L coso - cosYJ (4~1le)
2 | vi|w
b =9 [L sing J (4-1F)
G- Vecos?| W
;.' . The variables x, y and h form the three axis position, Vv
ﬁ is velocity, Y is the flight path angle and ¢ is the
| heading angle. T is the constant maximum available
k thrust, D is drag, L is 1ift, W is a constant weight and
3 g is the acceleration of gravity. The expressions for
( 1ift and drag are
L=k pOGVZACL (4-2a)
D = % pg o V2A(Cp_+kCp,2) (4-2b)
J where A is the reference wing area, Cp is the 1lift
coefficient, Cp, is the zero 1lift drag coefficient and k
is the induced drag parameter. The parameter pPgyo 1is
3 "-:\‘ the exponential air density expression

15
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i
AN Poc = poe B (h=hp) (4-3a)
g where B is a constant and hp is the minimum altitude of
’ﬁ interest, Least squares curve fits to data from
N
» atmospheric tables (Ref 8) produce
3 Y . R
0 Poor = 0.0023769¢ | 30477 (4-3b)
» _{h=35089
o Poog = 0.00072736e 20953 (4-3c)
. Where Egs (4-3b) and (4-3¢) represent the troposphere and
 $? stratosphere respectively. For this exercise, only Eq
-E (4-3b) will be employed due to the altitudes at which the

aircraft maneuvers will be examined.

The control vector is

.
NN
ALY oe )

R u=| o comw | (4-4)
'g where ¢ is the bank angle, Cp, is the 1lift coefficient

W and 7 is the throttle setting. The constraints on the
ﬁﬁ control vector are

z% -180°< @ <+ 180° (4-5a)
;L CiL = (CpL = CLpay! SO (4-5b)
C2 = (Cp - 2WNmax) S 0 (4-5¢)
i Cy =CpL20 (4-54)
2_-* -0.5 £ 7 < 1.0 (4-5e)
R

?; where Cr_ .. is the maximum aerodynamic 1lift coefficient

and Npayx is the maximum allowable normal load factor.,
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From Eq (4-3) it 1is seen that the bank angle is
unbounded, the lift coefficient muut always be greater
than zero, less than both the maximum aerodynamic 1lift
coefficient and that for achieving maximum load factor
and the throttle setting may vary from half reverse

thrust to full forward thrust settings.

High Specific Power Aircraft - Corner Velocity Constraint

I1f both Egs (4-5b,c) are simultaneously zero, Bq (3~
11) is formed and is

S(x,t) = ov2 - 2WNpayx = 0 (4-6)
PoACLyax

This expression must be satisfied if sustained maximum
o turn rate flight at the corner velocity is to be part of
Ce the optimal trajectory. However, it is readily seen that
Eq (4-6) is not explicitly a function of any control and
therefore successive time derivatives must be taken until

Bq (3-12) is formed. This equation is
S(x,t) = V2ogph + 20V = 0 (4-7)

Substitution of Eq (4-1lc,d) into Eq (4-7) and rearranging

the resultant expression yields

S(x,u,t) = g [1‘.7_;;2 - sin? (1 -p;_’_)] =0 (4-8)
]

This expression is a function of throttle setting and

} - 1ift coefficient and satisfies the requirements of Eq (3-

17
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12). Therefore, only one interior point constraint
B exists, Eq (4-6), and BEq {(3-15) becomes
M= S(x,t) = 0V2 - 2WNpax = 0 (4~9)

PoACLyax
The Hamiltonian of Eq (3-13) can now be formed and is

H = AgX + Ay¥ + Aph + Ay¥ + A, P e/
+ upe(k - Npax)* uyg[TA<R - sin?(1- £Y2)] (4-10)
29

For this type of aircraft problem, there is no integral

function F(x,u,t) and the constraint C; of Eq (4-5b) is

not state dependent and need not be adjoined to the

Hamiltonian. Neither M nor H is explicitly a function of
(-:.-— time and therefore from Eq (3-16) it is seen that

M¢ l tete * o .. H(tc-) = H(tc-O-) (4=-11)
Hy = 0 % H(tg) = H(tg) = H(tg) = constant (4-12)
Recalling Eq (3-17) and applying Bq (4-9), it is seen

:ﬁ that only Ap and Ay will have interior point

discontinuities which are

Ahlte ) = An(te*) + nBov2 (4-13a)

Avlte ) = Ayl(te*) + 27M0v (4-13b)

Upon substitution of Eq (4-13) into Eq (4~11l) it is found
that
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na - vt (4-14)
2vVo

Resubstitution of Eq (4-14) into Eq (4-13) produces
Ante™) = An(teh) - Av(tc*)éjf (4-15a)

Av(tgy = 0 (4-15b)
The discontinuity in Ay and the dependence of Anp(te™) on
Ay(tct)y makes forward integration of the differential
equations impossible and backward integration from the
final conditions to the initial conditions is required.
This will be discussed in Sec 5.

Optimal Controls

The optimal controls are defined by applying the
Fuler-Lagrange condition, Eq (3-8) and the Legendre -
Clebsch condition, Eq (3-18) to the Hamiltonian of Eq (4-
10). To find the optimal bank angle, ¢ , two equations

must be satisfied. They are

= L in + Lecose¢=0 (4-l6a)
He A,ﬂ ( sin ¢ ) VE%E?A
or
Hy = - Aysing +A,S080 =0 (4-16h)
cos)y
and
Heg = - Aycos¢ - A, 38in® > (4-17)
cosY

In order for both of these conditions to be satisfled

gsimultaneously, the only solution is

- A - Ag/COB
cos¢p = » 8ing = 2 (4-18)
(A )z M2+ (dos

19
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.
E : Upon substitution of the non-unique cos¢ and sin¢
. expressions into Eq (4-17) it is seen that
3 Hyp = {/;‘,2 + (A N2 5 (4-19)
- cos Y
% thus insuring a minimizing control at all times. Eq. (4-
‘{ 18) will produce the optimal bank angle history.
' To define the optimal 1lift coefficient, again two
9 conditions must be adhered to. They are gk
J '
. Hop = -9APC + L-AyLeycose + —9Ay Lo sing
i W wv WvVcos
: - D >0 4-21
Hepep = - a)\VDcLCL %”3 CLCL ( )
O
{: Rearranging and substituting Eq (4-17) yields
b
Hep, = -(Ay + #3)Dcp, - (53_ - H2)Lgy, = O (4-22)
‘ and
§ erL = -( Av + u3)Depey 2 0 (4-23)
N
X For an interior C; control which is within the
5 constraints of Egs (4-5b,c,d) both u, and 43 are zero.
é Therefore, Eq (4-23) states that for an optimum interior
% control
)
N Ay S 0O (4-24)
as DCLCL is always positive. Eq (4-22) produces the
1 optimum interior control
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‘n Cp, = =Hes (4-25)
: 2kVAv

If any of the bounds of Eq (4~5b,c,d) are exceeded by Eq
(4-25), Cp, is set to the boundary value exceeded. 1t
maximum load factor flight occurs, Eq (4-5c) is zero, and
the non-zero value of U3 is calculated from Eq (4-22) to

be

4kWNmaxAv + H“ (4-26)
p, 0 v v

Uy =

To determine the condition of Hc, during corner velocity
flight, the throttle history must be examined first.
The two final equations which must be investigated

0 for the optimal thrust control are

[ Hy = ( \v + u3)g% = 0 (4-27)

and
Hegy = 0 (4-28)

S LT .

Egs (4-27) and (4-28) demonstrate that the throttle is a

E ik 2 a1

v :
& =_i x_2

singular control because it does not appear in Eq (4-27).

WA "N

Therefore, unless u3 equals Av, which can only happen

during sustained corner velocity flight, the throttle

Y Y

L

gsetting cannot be an 1interior value, but must be a

L
v f

minimum or maximum boundary value depending upon the
value of Ay. Using Eg (4-5¢) and Eq(4-27) it |is

determined that
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we 1.0 for A, <0 (4-29a)
7= -0.5 for Ay >0 (4-29b)

If Av equals zero, which happens as the corner velocity
arc is entered as shown by Eg (4~15b), then the throttle

value is determined to be

M= 1.0 for j\y 20 (4-30a)
= -0.5 for jy SO (4-30b)

For flight along the corner velocity arc, the partial or
interior throttle setting can be determinad from Eq (4-8)
to be

7=l [Dpax + W siny (1- 8v%) | (4-31)
T 2g

For this interior control to be a viable solution, from

Eq (4-27), it is seen that

M3 = = Av' (4-32)
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Upon substitution of Eq (4-32) into Eq (4-22), it is

)

>

determined that along the corner velocity arc

Hop = - %&.LCL <0 (4-33)

as all of the components of HCL are always positive.
Therefore, BEq (4-33) demands that CLpax b€ the optimum Cp,
for this condition which corroborates the reguirements of

Eq (4-6).
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Costate Differential Eguations

Of the three Euler-Lagrange conditions, two have been
developed; one for the state derivatives of Egqs (3-1) and
(4-1) and a second, Eq (3-8), to determine the minimizing
optimal contrels jus: discussed. The third condition, Eq
(3-19), deals with the costate differential system, and

produces the following equations:

Ag = 0 (4-34)
Ay = 0 (4-35)
A Dnl Ay + #3)+Lp (e - “2)] (4-36)

?-
<
]

¥l

g [Dv< Ay + H3)+Ly(Hee - uz)]

W v

Liay? +ayf)=sin¥ ( Ap + H38V)
v

- cosy ( Ax cos+ Ay siny) (4=37)

5&1 = sin?[V(hxcostp-f- AY sin!/J) ")\7.9.]
‘ : v

+ c07[9 [Av + M3(l- ﬁ;’f_)]- Ah"]
g

- Agbtany (4-38)

5\, VeosY (ax siny - Ay cosy) (4-39)

Aircraft Model

The coefficients used to complete the point mass
aircraft model are identical to those of (Ref 5:97). The
quantities in table (4-1]) were used to calculate the

initial altitude and airspeed values of Table (4-2).

23

".x

S AR T S T e T A e e A e e e L I e IR B T S L




T Ry T T T R T T T T W N N T T R T T VT T TR U T

. AFIT/GAE/AA/78D-8
¥
B e Name parameter value
j Thrust, max T 18,225 lbs*
0 Weight w 12,150 lbs
f% Maximum load
R factor Nmax 7.22
Y Reference
wing Area A 237 £¢2
;£ zero lift
% drag coefficient Cpe 0.02
! induced drag
: coefficient k 0.05
- maximum
N lift coefficient CLyax 1.0
o
§ * - This thrust corresponds to T/W = 1.5
Y
| Table 4-1. Point Mass Aircraft Model Parameters
G Transversality Conditions
if As stated in Sec. 3, the transversality conditions,
i Eqs (3-20) and (3-21), complete the formation of the
I
TPBVP. For the minimum time and maximum energy turns to
S be investigated, the state dependent conditions of Eq (3-
f; 2) are as shown in Table (4-2). From that table, it is
{ evident that for all cases examined,
‘ K [x(tf),tf)]- y (4-40)
U-7 |t=te
Xy where 7 in this case represents 180° in radians.
N
X i
2 s
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3 ' Employing Eq (3-20), it is determined that

[ Ax Ay Ah Av Ay AO]t-tg = [0 0 Gy Gy V1 V2 ] (4-41)

which are not a function of the state final conditions,
K. This result holds for all three problem formulations.
It is noted that from Eqs (4-34), (4-35) and (4-41) that
Ay and Ay are always zero, have no effect upon the
problem solutions and may be eliminated from the
formulations from here on. For simplification, Eq (4-39)

now becomes
Ay =0 (4-42)

Eq (4-41) shows that values for Ap and Ay at the
final time can be explicitly calculated, but values for
Ay and Ay must be Jjudiciously selected. No
additional help can be provided for selecting initial
guesses for the finals values of A, and Ay for a
fixed final time problem; only that they together must
generate a feasible final time bank angle.
However, for both free final time problems, using Egs
(3-13), (3-21), (4-8), (4-40) and (4-4l1), it can be shown

: that at t = tg

As noted in (Ref 1:183), when a singuiar arc of this
type is part of the optimal trajectory, the trajectory

terminates on the arc. 'This is helpful for two reasons:
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s
t e
b ~N 1) the final velocity is the corner velocity and 2) the
-" final load factor is maximum allowvable load factor. Upon
substitution of these two facts plus Eqs (4-le,f), (4-17)
\ (4-19) and quantities from table (4-2), it is seen that
_‘,}g_\/)\yz + 2 M3 - Gy = 0 (4-44)
“ with one equation and two unknowns, one variable must
. be selected. To help make the best selection, two
,': observations can be made: 1) based on Eq (4-40) a
‘ positive, right turn must be executed and 2) from Eqs (4-
: 1f) and (4-18), a negative value of Ay must exist to
insure a right turn. Therefore, A, shall be selected
! c; and A, calculated from the relationship
Ay = -\/(_‘f_) Z(th - 3—-)\7)2 - A, 2 (4-45)
gN \'4
To insure that a negative radical is not chosen A, is
' limited by solving Eq (4-44) for Ay and substituting
: Ay =0. The result is
-r It is of interest to plot Eq (4-44) to aid in selecting a
¢ reasonable bank angle at the final time. Fig 4-1 is
plotted as an example for a minimum time-to-turn problem
5 27
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\\\\‘ High Speed

Min Time Solution

En
i
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i
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F 1. dive 1000 fps
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+
>
=]

500 fps

3 Low Speed
3 ] Min Time Solution

Figure 4-1, Minimum Time Final Velocity Contour Plot
for selection of A, and A,
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(Ggg=l) for final velocities of 500, 750 and 1000 fps.
As seen in the figure, there is a locus of maxima for all
velocities which is a straight line. Solving Eq (4-44)

for the value of Ay which maximizes A, yields.

v r  Aymax = _ v ' (4-47)

g(N2-1) gvVni-1

The values of Eq (4-47) in turn yield

tan ¢ -,/ NZ-1 (4-48)

vhich is the tangent of the bank angle for a level

& coordinated turn at the final time. Note that the locus
s

o plotted corresponds to 820 of bank for 7.22g's only.
RN .

; ﬁf~ Therefore, choosing combinations of Ay and Ay above
1"\:

w5 the locus will cause the aircraft to pitch up at t¢ and
?? combinations below it will cause a pitch down. A similar
“) plot can be generated for any other free final time
nY

§ﬂ problem.

e

§€ In summary, the costate final conditions are stated
;Nﬂ as follows:

ﬁ%; a) minimum time

i G = t¢ A -[ 000 0AyAy ] (4-49)
¥

j?j b) maximum energy

< ’
G = Ej-Eg A=[0oo0 -1 ¥ Ay ] (4-50)
8% :":

% N

&

s
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¢. maximum energy gradient

PPl

G = Ei-Ef -1 -V
' A=l 00 — —— A A (4-51)
te [ tg ote ' Y

Substitution of table 4-~1 quantities into Eq (4-6) yields

Ve = 558.07, [L (4-52)
\_ o

f From Eq (4-52), it is clear that the selection of a final
altitude fixes the final velocity. Along with a choice
for a final time, the values of Ap and A, can be
determined for all the problem formulations investigated.

For the selection of A, and Ay for fixed final
time problems, arbitrary numbers which generate a
feasible final bank angle are the best guesses. However,
for free final time problems, use Egq (4-52) for a
velocity, select a final bank angle for pitch up or pitch
down at tg, pick Ay off of Fig 4-1 using a protractor
. and substitute it into Eg (4-45) to calculate Ay . This
process will always insure that Hg¢ + Gg, = 0. The
‘ solutions for Ay and Ay for both the high and low
f speed minimum time cases are plotted for reference on Fig
4-1,

Once these final conditions at tg are established,
j the state and costate differential equations (4-1) and
(4-34) through (4-39) can be integrated to the initial
conditions at t,. The methods of integration and search

\ fﬁé for the optimum control trajectory are covered in Sec 5.

s
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V. Numerical Method for Solution of the TPBVP

i As stated in Section 4, the dependence of Ap~ and
Ay~ on Ayt makes forward integration of the state and
costate equations from initial to final conditions
impossible. Backward integration from the final initial
conditions must be employed for both minimum time and

maximum energy problems.

Minimum Time=-to-Turn TPBVP Solution

Given the 2n+l dimensional final condition vector,

Z¢, having the quantities

Zg = [XYhv ¥ ¥ Axhy A Av A, Ay H]
- [- --=- 0180° 0 0 0 0 ¥ vy -1] (5-1)

and the 2n+l dimensional initial condition vector, 2y,

:Eﬁ, : having the quantities

, 23 =[X¥h vV 7 ¥ AxAyAnAv Ay Ay H]

K - [o Oh{yVi0O0 = = = = = = -1] (5-2)
{'

ﬁ two subset vectqrs relating final condition variables and
:gi initial condition requirements can be generated.

s It can be seen from Egs (4-1) and (4-34) through (4-
EE§ 39) and (4-41) that the down range and cross range
f§; variables X and Y and their respective influence
. functions Ay and Ay have no effect upon the problem
~% solution as they are dependent varjiables. They can be
5:‘ eliminated from the solution for the sake of expediency.
¢
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;

; o It was learned from Sec 4 that a selection of the
L4 L

A altitude at tg dictated the final corner velocity.

Therefore, velocity at tg is no 1longer a - variable.
Additionally, the use of this altitude-velocity pair in
concert with the requirement for Hg + Ggg = 0 allowed for
the calculation of Ay at tg as a function of Ay .
Now, Ay and H¢ are no longer variables. As this is a
free final time problem with an interior time constraint,
E t¢ and to must be added as variables to be selected
before the integration is performed. The final condition

variable subset vector, 2z, which will be varied to reach

1
3\ the initial conditions is therefore

b z= [ h Ay te te | (5-3)
i G

k. These four final time variables match with the four
Bl ¢

2 initial time requirements
>

_ 2y = [ 01 vi v Wi (5-4)
@ Af ter integrating from the non-optimal zZ vector
{ conditions at t=tg to t=t,, there will be a non-zero
d residual miss vector R formed by the difference between
;. the initial time results and the desired conditions. R
;f is generated from Z; and is

R = [h-hi, V-vi, ¥ , ¥ ]t-to (5-5)
K.
i |
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The objective of the TPBVP is to select the variables in

»
L
rr

-
’ 2 which when integrated from tg to to drive the residual
vector R to =zero. In order to reduce the values in R
from one iteration to the next, the direction and
magnitude of the changes to the 2 variable values must be
determined. This can be done by solving a Taylor series
expansion of R about the 2z vector. From (Ref 14:686),
this is found to be

R(z+ 6z) = R(z) + OR gz + L §2T &%R 0z
oz 2 822

+ Higher Order Terms (5=-6)

Assuming that the second and higher order terms in Eq (5-

ﬁf? 6) are negligible with respect to the first order term's

influence on a solution, then the equation for change in

-

R, AR, due to a variation in the final time vector z,

- wewre woEcw
P il

! 621 is

o & Al T S TR

AR = R(z+ 6z) - R(z) = OR 4§z (5-7)
oz

It is desirable that after a single variation of z,

due to an increment &0z, the term R(z+ 0z) will diminish
:' to zero. In order for a vector 6z to be calculated
which will cause R(z+ 0z) to be zero, Eq (5-7) |is
modified to be

AR = - R(z) = OR 42 (5~8)
0z

33
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Using Newton's Method of Tangents (Ref 6:170) to solve Eq
- (5-8) for 0z, it is found that

6z = - OR"1 R(z) (5=9)
Oz

P(z) is a straight-forward numerical difference as shown
in BEq (5-5). The 4x4 first order derivative matrix is
formed using a numerical central difference scheme (Ref
6:220) operating on each of the four variables in z.
This is then inverted and used to calculate 0z in Eq
(5-9).
0z is the vector along which a search is conducted
to find what fraction of its magnitude will cause the
biggest reduction is the R(z) vector. Should a full
magnitude search along 0z not reduce the R vector on
the first attempt, reductions in the magnitude of 0z
and subsequent searches are required until the maximum
reduction in R is reached. The equation for reduction in
0z is formed using the Golden Section Ration (Ref
6:460) and is

623+l = 0.618034 + 6zJ iz (5-10) !

Reductions in 0z are required until the maximum reduction

in R is achieved.

In summary, the following steps are taken tc obtain

the optimal solution for the minimum time problem:
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l) Salect values for the elements of z which comply
. with the transversality conditions of Section 4,
2) Integrate the state and costate equations
backwards constrained by the requirements of
Section 4 from tg through to to t, and form the
residual vector R.
3) Numerically form the derivative matrix OR by
integrating backward to find the varia?if)ns in R
due to independent variations in the z elements.
4) Calculate 0z from Eqs (5-9).
5) Modify the values of 2z by 0z and perform a search.
6) If a reduction in R does not occur on this
search, decrease 0z according to Eq (5-10) and
repeat step 5 until a reduction occurs. |
7) If the root sum square (RSS) of elements of the
reduced R vector is greater than 10-4, then o
repeat steps 2 through 7. }
8) If the RSS of R is less than 10-4, then the
? solution has been achieved for the minimum time s

problem.

Maximum Energy Turn TPBVP Solution

The maximum energy turn formulation is nearly

{
E
&
3
i

identical to the minimum time formulation. As Eq (4-43)
dves not apply to a fixed final time problem such as

this, there are only 2n final conditions in the Z vector.
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N The resultant modifications to the z vector are that tg

-

Y is no longer a variable and Ay has taken its place.
This still leaves 4 variables and 4 equations to solve
and the same methcds used for solving for {2z can be
used,

Maximum Enerqy Gradient TPBVP Solution

The method wused to solve this formulation |is
identical to the minimum time-to-turn method. Only the
constant value for the Hamiltonian has changed due to the
new values for Ggg.
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. VI. Anticipated Results

No predictions for the values of tirader Etrade °Ff
BGmax c¢an be made other than the qualitative predictions
on Figures 2-1 and 2-2, However, qualitative predictions
about the control histories can be presented. They are

presented in Figures 6-1 through 6-6.

Optimal Control Histories
The predicted bank angle histories for Vi > Vo are

shown in Fig (6-1). For the minimum time turn (curve
,E ‘a'), an initial bank angle of less than 90° is required
‘ to climb while turning to bleed off airspeed as rapidly
as possible. Subsequent to reaching the corner velocity
arc, the bank angle is increased tc be greater than 90°
ﬁ;‘ to restore the flight path angle end condition. Given
more time in which to complete the turn, a slight
decrease in the initial bank angle and a slight increase
in final bank angle should be in order as climbing for a
longer duration to a higher corner velocity should occur
with resultant greater flight path angle excursions,
However, the basic shape of the history should remain |
intact.
The 1ift coefficient histories shown in Fig (6-3) all
represent maximum load factor flight until the corner i

velocity arc is encountered at which point Cp_.. is the

optimum control. An interior lift coefficient may occur
should time be available, and insufficient climb and

acceleration capabilities exist at the higher altitudes

; a
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at the maximum load factor.
The throttle history for Vi > Vo flight is the most
provocative control to discuss for this problem. From
(Ref 1), it is known that the throttle setting will be
minimum until the corner velocity arc is intercepted at
which point, an interior thrust control will be employed
Given extra time to complete the turn and
it

throttle will initially be at minimum setting and then

(curve 'a').

maximize the final energy is postulated that the

switch for some time to maximum throttle prior to an

interior corner velocity arc setting. This would be a

*bang-bang-singular" throttle control (curve 'b'). This

combination is proposed as it would require less power

and time to decelerate from high speed and then

reaccelerate to corner velocity arc than the converse.
no minimum control bound would be

!cl)

Given enough time,

expected; only maximum-singular control (curve as

will be discussed for Vy{ > V.

the control histories

For the case where Vi < Vg,

should differ quite markedly from the Vi > Vo case. In

Fig (6~2), the initial bank angle for the minimum time

turn, curve 'a', should be the la;gest of all the turns

80 as to create the greatest acceleration possible

terminating in the smallest bank angle. Given more time
(curve 'b'), less diving and more climbing would

If

to turn,

result, thus reducing the bank angle requirements.

sufficient time and excess power are available, the bank
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angle may start at a valuc less than 90° and finish
N - greater than 90° to maximize final altitude and airspeed.

The lift coefficient histories, as seen in Fig (6-4),
should all be at maximum 1lift coefficient unless
N sufficient time to complete the turn is supplied wherein

a corner velocity arc is not part of the optimal history.
N In that case, an interior lift coefficient may occur, but
s is not expected in this exercise.
From Fig (6-6), the throttle histories for Vj < Ve all
. contain maximum throttle settings until the corner
velocity arc is reached (curve 'a'), otherwise, known as
"bang-singular® control. As time to turn is increased,
f% climbing and accelerating to higher speeds should cause a
$ larger to value and a higher corner arc throttle setting
: (curve 'b'). Given gufficient time to turn, a corner
velocity arc may not be part of the optimal history and
N the result is a maximum throttle setting throughout the

turn. The shape of the throttle history during corner
j velocity flight 1is dictated by an altitude rate and
; £light path angle rate combination.

None of the plots presented are intended to be
construed as predictions of exact values in either time
or control variable. They are intended to predict trends
for comparisons between minimum t¢time and maximum energy

k. turns.

- 39
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VII. RESULTS OBTAINED

The equations, conditions and constraints for all
three problem formulations, set forth in sections 4 and
5, were programmed on a 32 bit DEC 20/20 digital computer
in the Space Division Computer Center. A copy of the
computer programs, OPTMYZ and its subroutines, are
located in the appendix. The results of this program's

execution are presented in this section.

Minimum Time-to-Turn Results

As the costate variables determine the optimal
controls which in turn, determine the state trajectories,
the results are presented in that order. Time history

(f‘ plots for the costates, controls and states are presented
in figures 7-1 through 7-9. By examining these plots,
several observations can be made.

First, the costate histories figs (7-1) through (7-3)
are well behaved and are primarily monotonic; the
discontinuities in AR and Ay do not create erratic
behavior or unexpected characteristics. It may be
coincidence and of no consequence but it is of interest
to note that for Al when t < tc, is virtually a constant

while Cr, is on the Npyax boundary for the high speed

solution but varies smoothly when Cp is equal to chax

for the low sgpeed solution. Otherwise, Ap acted as

ﬁi* expected. Ay responded per the optimal control
reOu A requirements of Eq (4-24) through Eg (4-32). It
-P':'.::'

Q;ﬁ
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AL exhibited no unexpected trends. Figure 7-3 shows the
iﬁ‘ ) correlation between the bank angle, flight path angle,

Ay and the constant Ay + The bank angle history can be
determined from the plot using a protractor the same way
as was done in fig (4-1) and can be correlated roughly to
time using the tick marks at one second increments.
Again, these parameters all vary smoothly with time.
The control histories are shown in figures (7-4)
B through (7-6). The bank angle history shapes were as
expected although the amplitudes were 1larger than
anticipated. The 1lift coefficient histories were exactly
as expected for both high and low speed solutions. The
shapes of the throttle histories were as expected,
qim although 1like the bank angle, their excursions were
- greater than anticipated. As seen in fig (4-6), the
- singular arc portion of the solutions appear to go right
) up to the boundary denoted by the arrow heads. In
-§ actuality, the values of 7 at these two points are 7 =
j 0.9999 at t = 6.12 secs for the high speed solution and
é m = -0.4997 at t = 6.22 sec for the low speed solution
o thus keeping them interior to the boundaries. However,
in order to insure that = remained interior, a special
search routine in the integrator had to be programmed to
look for the point, if one existed, where the arc touched
the boundary, thus ending the arc. More will be said
about this in the technique problems section. In

retrospect, it makes sense that the throttle would go
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ttghtl up to the boundary even on the arc because the
controls will use all of the authority they have to
minimize the time to turn. Just as in a bang-bang
controller, a bang-singular controller should be expected
to go from boundary to boundary vwvhile meeting its
interior control constraints.

Turning to the state trajectories starting with PFig
(7-7) it is seen that both solutions end up on the
singular arc and both met a small loss in energy (-262 ft
for low speed and -1258 for high speed). Both maneuvers
are basically planar, the steepness of which are dictated
primarily by the initial bank angle values. This
steepness correlates directly to the flight path angle
histories of fig (7-8), the low speed being more vertical
a maneuver than the high speed. The main reason for them
not both being vertical plane maneuvers is that the
throttle settings on the arc were already up against the
boundary. However, increasing the thrust-to-weight ratio
to approximately 1.9 or greater would result in two
vertical maneuvers where the arc throttle histories would
not be nearly so close to the boundaries because the use
of gravity would be maximized. The heading angle
histories show nothing unexpected. The 1low speed
solution has higher peak turn rates due to the steeper
flight path angle history. Tables (7-1) and (7-2)
summarize the key values for the states and costates for

the low and high speed solutions respectively. From both
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Figure 7-8. Flight Path Angle vs Time for Minimum
Time High and Low Speed Solutions

WLy N P LR GRS L% 8. T VY S L S A

£

-

N e - RS AR - . P L " -
At T T R A IR
AT - . !

AT A R O A T LA R IR C. R UL I - W I
» kN SN A R b e S A
AR ’.z.‘f.:&;'s IRV ERC LT Vit IR TN

T
--r LT gt e
At

R
e Yata



AFIT/GAE/AA/78D-5

18 ' '
L
-

90 :

High Speed
Solution
at tc
Low Speed
Solution
at tc

Heading Angle, ¢ (DEG)

i 1 )

8 10

6
Time,t(sec)

Figure 7-9. Heading Angle vs Time for Minimum
Time High and Low Speed Solutions
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o
oo +* -
ty=11,97 to =5.378=t, t, =0 R
Ah 0 0.0002269(0.0001010 [0,0002213

o AV 0 -0.009410 0 -0.004695
i
e Ay -3,677 1.616 3.398
fﬁ} Ay -1.087 -1,087 -1.087

' X -285.6 2565.1 0

Y 1981.9 818.0 0

. - SM
rv AE -262 4117 0
-
Y h 19809 23123 24999.5 | ry=-1.4626
Y
e v 772.4 815.5 528.6 r,=0.7539
o

T y 0 -1.158 0.0787 Ty =0.0787
o
;g: Y 3.14159 0.9703 0.0782 Ty =0.0782
[}
o IR =0.8914
; Table 7-1. End and Corner Values of States and Costates
o for Low Speed Minimum Time Solution
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AN L I A

tf-10.87

+ -
te -4.495-1:c

Ah

0.0002078

0.0001103

0.0001101

Av

-0.008138

0.005010

2.120

'1-917

-3.108

-2,1075

-2.1075

-2.1075

1239.5

3252.2

3082.0

965.6

AE

-1251.8

-4668.3

19033

16372

14998.3

rh=-1.7438

762.6

730.0

960.05

rv-0.3734

0.7714

0.006517

r =0.006517

3.14159

0.8626

0.06289

r =0.06289

IRl =1.7555

Table 7-2.

End and Corner Values of states and costates

for High Speed Minimum Time Solution
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0 tables, it is seen that the end conditions were not met
to the accuracy that was expected. The norms of the
) residual vectors shown are as low as could possibly be

achieved with the program, computer and methodology

@ -»
2 & 5 _&_A

. employed.

A" -

..‘ s
LA e .

Problems with the Technigue

The search for the optimal controls began by using a

variable stepsize integrator and allowing only small

P
LA+

increases in the total time allotted for the turn to

occur on each {teration to insure stability 1in

ot
H > & T_#

approaching the solution. However, after achieving a

é norm of the residual vector of approximately 10, fixed
;f s stepsize integration had to be employed. The prime
3 (s reason for this is due to the special programming which
\‘ had to be added to the integrator to find the point in
.

time where 7 went so close to or touched the boundary
during the search phase. This search could not be
performed using variable stepsize integration.

The use of small, fired stepsize integration helped
to get closer to the optimal solution, but the extreme
gensitivity of the norm of the residual vector to the

final value of A, created havoc with finding the minimum

| in the state space. As shown in fig (7-10), it is seen
{i that the standard parabolic minimum seen in bang-bang
3% minimum time problems has been replaced with a gross
% discontinuity in the norm at the point wvhere the

o
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o
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T
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y Figure 7-10. Norm of Residual Vector vs Ay for
Minimum Time High and Low Speed Solutions
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magnitude of A, gets large enough to create a steeply
N ’ banked planar maneuver which causes & to require a

boundary value at the arrow head points on fig (7-6).

This causes the time at which the switch from the
| singular arc to the boundary value control to snap back
(> and forth during the search for the minimum. 1In the low
speed case, the change in Ay from -3.677 to -3.678
N caused a discontinuous jump in the norm from less than
& 1.0 to more than 100. Whether the sensitivity matrix for
calculating 0z was formed using a forward, central or
backward difference scheme was immaterial. The =z
components being so tightly coupled could not be modified
so slightly in the proper 0z direction tc reduce the
norm any further than that shown in tables (7-1) and (7~
2).

Even though the end conditions were not met close
enough to form a residual norm of 10-4 or less, the
. trajectories shown are extremely close to the optimum and
i demonstrate that the technique and problem formulation

are correct and feasible.

EE Maximum Energy Turn Results
No feasible trajectories were generated for the
maximum energy turn formulation which came close to the

desired end conditions. No norm of the end conditions

could be achieved which was 1less than 50 to 20 {n ,
" magnitude. Innumerable attempts were made to find a }
) J
y 57 ‘
,- a
b e IR AR R O o TR LN DR P D0 O 1 S P RN S '\'{{.‘

——————————————————-—------------I-I-IlIllllllllllllllllllllllllllllllll



WY NN NN VT YNNI YW W T WY AR A A LAk B ARCRN A aerr Il Al i ‘i i b AL i i) LA i A S A "l Lk F E , 'l H -' ;l ! .l ,'!l "l

AFIT/GAE/AA/78D=5

single set of final time conditions which would generate

vﬁ? one feasible trajectory from which to propagate the
.- others. Several fixed final times were used as starting
| jﬁ points, but all times generated approximately the same end
;ﬂ results. The multipliers A, and Ay grew an order of
‘E magnitude with each iteration surpassing values of 1013
eg and growing with no reasonable reduction in the end
: condition norm. No definite reason can be given for this
. type of performance; perhaps the linearity of the
i: aircraft thrust and drag characteristics create a flat
3 state space where there is no obvious maximum energy
. turn,
: Since no maximum energy turn solutions were achieved,
" the graphical method of fig (2-1) for depicting the
(b energy-time tradeoff can not be used.
Maximum Energy Gradient Results
s Unfortunately, the same type of results, as in the
ﬁ maximum energy turn attempt, occurred here as well. The
% values for Ay and Ay were in the vicinity of 108 and

growing steadily showing no reduction in the norm of the
end conditions. Additionally, the final time would not
settle in one neighborhood but would grow and decrease as
the attempts progressed. Once again, no positive

explanation can be offered other than presented in the

ALl S0 aRga g
A L G NI S T

previous section.

-l

No maximum energy gradient solution was achieved
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using this method either. All three problems used pure
optimal control formulations and ran into extreme
difficulty in achieving a solution. Evidently, these
formulations do not lend themselves well to methods using
Lagrange multiplier techniques and may be more well

suited for parameter optimization formulations.
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VIII. CONCLUSION

The gocal of this effort was to define a tradeoff
between time-to-turn and energy in a turn using the
classical optimal control formulation. First, a minimum
time-to-turn trajectory was to be generated for initial
conditions of equal energy both above and below the
corner velocity for that energy. Second, maximum energy
trajectories beginning at those same initial conditions
were to be generated for final times greater than the
minimum time. From all of these trajectories, the
maximum energy gradients, defining the time-energy
tradeoffs, were to be graphically identified. Thirdly,
these tradeoffs were to be corroborated using the maximum
energy gradient formulation.

This project was successful in defining the
equations, conditions and constraints required to reach
the above goals. The computer program OPTMYZ was written
and executed on a DEC 20/20 digital computer which was
successful in defining the two minimum time trajectories
for the initisi conditions above and below the corner
velocity conditions. The results are presented in
section 7.

This effort failed to produce feasible maximum energy
turns or the maximum energy gradients required for the
tradecff definition. Therefore the time-energy trade can

net be identified for either of the initial conditions
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for the aircraft model wused and the formulations

employed.

Recommendations for further work in this area are

presented in section 9.
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IX. RECOMMENDATIONS

The following are prioritized recommendations for
further research 1n;the area of time-energy tradeoffs.

l) Continued effort should be placed wupon
defining the time-energy tradeoffs as defined
in section 2 using the formulations presented
herein. Emphasis should be placed upon
developing a technique which will better
determine the minimum cost function for a
complex singular arc problem such as the
minimum time problem presented.

2) The time-energy tradeoff should also be
determined as in recommendation (1) using a

o parameter optimization formulation to study
the tradeoff of complexity versus accuracy.
Based upon these results, the remaining
recommendations would use the superior
technique for future work.

3) Recommendations (1) and (2) should then be
repeated using a more realistic aircraft
model, There should remain regions in the
altitude velocity map where high specific
power exists, but the thrust should vary as a
function of altitude and Mach or Reynolds
number as should the lift and drag

parameters. Clpax’ SDo and k. A thrust
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pinch, dynamic pressure, Mach number and

e altitude placards could be added for realism.
4) Recommendation (3) should be repeated with
the addition of a fuel flow or varying weight

and where

W= -c|m (9-2)

5) Recommendation (4) should be repeated with
the performance index modified to pay a

penalty for excessive fuel consumption. That

is
-[hg=h vel-vy2
G x(tg),tg = £=ny + VEOOV] (9-3)
(We=-Wi)tg 2g(We-Wi)ts
6¢' This effort would be the most direct way of

looking at trading time and fuel for energy

with the most realistic model for an

f;c aircraft.

ii;% 6) Using the results from the previous
:ERS recommendations, a gquasi-linear feedback law
(ft could be developed for two modes of
t?ﬁ; operation. The first mode would be an
33& algorithm for minimum time turn guidance free
lgkk from the use of influence functions and the

second mode would be for a maximum time-
energy-fuel tradeoff based upon only state

. A and state rate feedback.

T T
: o PRI "L‘.\r‘l‘i et k"l'?.k-“ 'rj'?.f"i &




e

%

AFIT/GAE/AA/78D=5

.

AR

PO

Pt

.
v e

)
ae
." 'rlrl

4 e,
* ‘ﬁ .} P ‘l;

P

_"g— ¥
RS

" \‘-x _A.'\\‘

The culmination of this series of efforts
would be to program these faedback laws into
a manned simulator with visuals and head-up
displays to examine the man~-machine

applicability.
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program optmyz
e dimension x?¥ﬂ) x£C10),x1(1@) ,dx(4),rcl4),rm(4),rp(4),dz(4)
& kdrdz(4,4),drdzi {4,4),al4,4) ' ’ ’ PR '
real k,nmax
common a,beta,clmax,cdo,g,k,nmax,tmax,w,xiy
common clnmax,hfifi,jflag,qa,rosig
data xi(6),xi(7),xf(6),xf(7)/2.2,Q,8,0.9,3,14159/
data a,beta,clmax,cdo,g,k,nmax,tmax,w/
&237.4,00.900032811628,1.0,@.,02,32.174,0.85,7.22,
&18225,9,12158,8/
write(5,1)
1 format(1x,'load 1flag for tmin,Emax or Edotmax')
read(5,%) 1flag
write(5,2)
2 format(ix,'load hf,lambdagammaf,lambdapsif,tf,tc,hi,vi')
read(5,%*) xf(1),xf(2),xf(3),tf,te,xi(1),xi(H)
xid=xi(4)
write(5,3)
3 format(1x,'do you wish to print each step(yes#@,nos1)?')
read(5,%*) iprint
call assign(xf,xi,tf,1flag)
do 4 i=1,19
4 x(1)=xf(1)
call integ(14,x,tf,tec,iprint)
xf(9)=¢x(9)
xF(1@)=x(12)
. call ndmiss(x,xi,r,rnorm)
<5 write(5,5) r,rnorm
5 format(1x,'r and rnorm',/,5(1x,f1@.4))
it=@
6 it=it+1
write(5,7)
7 format(1x,'do you want to continue?!')
read(5,*) choice

if(choice.eqe.®) go to 16
if(rnormele,1.,2@8€) go to 16
do 12 i=1,4
ii=1
iii=1
do 8 j=1,1
8 x(j)=xf(J)
tfs=tf
tes=te
write(5,81)
81 format(ix,'deltas')
call deltas(x,dx,tfs,tes,1flag,ii,i1ii)
write(5,81)

write(? 82)
82 format(ix,'assign')
call assign(x,xi,tfs,1flag)
write(5,82)
write(5,83)
83 format(i1x,'integ')
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.in call integ(1@,x,tfs,tecs,iprint)
R write(5,83)
‘ write(5,84)

84 format(1x,'ndmiss')
call ndmiss(x,xi,rp,rnormp)
write(5,84)
write(5,9) rp,rnormp

9 format(1x,'rp and rnormp',/,5(1x,f1@.4))
iii=41
do 1Q j=1,18@

1@ x(J)=xf(J)
tfs=trf
tes=te
call deltas(x,dx,tfs,tes,1flag,ii,iii)
call assign(x,xi,tfs,1flag)
call integ(18,x,tfs,tes,iprint)
call ndmiss(x,xi,rm,rnormm)
write(5,11) rm,rnormm

11 format(1x,'rm and rnormm',/,5(1x,f1@.4))
do 12 J=1,4

12 drdz(j,i)=(rp(J)arm(J))/(2.Q%dx (1))
write(5,13) dx

13 format(1x,'dx',/,4(1x,f14,7),/)
call mtxinv(drdz,drdzi,d,4)
do 14 i=1,4
dZ(i)=Qoa

L do 14 j=1,4
cr 14 dz(i)=dz(i)edrdzi(i,J)*r(y)

write(5,15) dz

15 format(1x,'dz',/,4(1x,f1@.4),/)
call search(xf,xi,tf,tec,dz,r,rnorm,1flag,iprint)
write(5,17) xf,tf,tec,r,rnorm
if(rnormegte1.2@@@) go to 6

16 write(5,17) xf,tf,te,r,rnorm

17 format(ix,'xf,tf,te,r,rnorm',/,2(5(1x,£13.7),/),

&2(1x,f1846),/,5(1x,£13.7))

A
Seran 21 ot D on o0

SN
.‘ b

-
%

\
:fg if(choice,eq.8) go to 2@
e do 18 i=1,14
xﬁi: 18 x(i)=xf(1)
s call integ(1@,x,tf,tc,q)
T call ndmiss(x,xi,r,rnorm)
e write(5,19) x,tf,te,r,rnorm
Lk 19 format(1x,'x,tf,tc,r,rnorm',/,2
<! ‘ V4 f1
8 a2, £10:8) 1705t Te £i30753 1/ 2R I13.T 00,
X 2¢ stop
{!Lﬁ end
S
i
%
t .
S
N
N
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19

29

subroutine assign(x,xi,tf,1flag)
dimension x(10),xi(ii)

real nmax

data beta,g,nmax/¢@,82@@32811628,32,174,7.22/
x(4)=558.,87441%sqrt(exp(abeta*x(1)))
if(1flageeqe2) go to 1@
Ei=xi(1)+xi(4)%%2/2,8/¢g
E=x(1)+x(4)#%2/2,4/8

if(lflag.eq.1) Gtf=1,.0
if(lflageeqe3) Gtf=(E@EL)/tf*#2
x2min=aGtf*x(4)/2e0.123
x2max=Gtfe*x(4)/264,471
if(x(2)eltex2min) x(2)=z=x2min
if(x(2)e8tex2max) x(2)=zx2max

D et TR N SR it S AR ki b T SR b J) ]

MW L VE T TR TR VR TR TRAIATY S R

x(3)=gsqre((x(4)/g/nmax) ##2# (Grfyx(2)%g/x(4) ) #2yx(2)%%2)

X(5)=‘oe
x(8)=ﬂ.ﬂ
if(1flageeqel) go to 24

x(5)=01,.2

x(8)=ex(4)/g
if(lflageeqe2) go to 2@
x(5)=x(5)/¢f
x(8)=x(8)/tf

return

end
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AFIT/GAE/AA/78D-5

subroutine integ(n,x,tf,tc,iprint)
dimension x(1@)

real k,nmax

common a,beta,clmax,cdo,g,k,nmax,tmax,w,xili
common clnmax,hfifi,jflag,qa,rosig
Jflag=4@

dt:lﬁ.25

tes=te

call rk78(n,x,tf,tes,dt,te,iprint)
x(5)=x(5)ax(8)*beta®x(l) /2.9
x(8)=0.8

tex=tesgl.Gendb

dt=l9.25

call rk78(n,x,tcx,8,@8,dt,tes,iprint)
te=tes

return

end
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AFIT/GAE/AA/78D-5

N subroutine rk78(n,x,t1,t2,dt,tc,iprint)

R dimension alph(13 S b(1§,1é) ch(13§ x(1@) xdum Q)

i dimension H1the) +2l1e £30i@),ricda),e5t10),f 1a),f7<10>,
&£8(14),£9¢18),£18(10),£11010),£12(1@) ,£13 (14}

real Kk, nmax,mu2 mu3

common a,beta, clmax ,cdo,g,k,nmax,tmax,w,xild
common clnmax,hfifi,Jflag,qa rosig

data (alph(i),i=1,13)/

&Q. , B THATURATHRTU@TH0ed@1,8.111111111111111e+84,
&R.166666666666666e+d4, Q.416666666666666e+ﬁﬂ .5 e+d4,
&0.833333333333333e+80,2,166666666666666e+2@,2.666666666666666e+14,
&04333333333333333e+i#,1.4 e+0ﬂ,€. ’
&1e0@ e+ﬂﬂ/

data ((b(i,j),1i=1,13),3=1,3)/

- & » e 7THATHRATHATHATU R, O.27777777777’777e|01
&@.416666666666666e4d1, 0.416666666666666e+03 5 ewdl,
&8.231481481481481e+84,48. 1333333333333336+QQ,2.Q e+@q,
&#.842592592592592e+8@,8,581219512195127e+@0,8,146341463414634c0d1,
&#.433414634146341e+424,4. ,Qo ’
&9.8333333333333336031,ﬂ. ;e ’
&, y e y @ ’
& o y o 1@ ’
&QO ,Q. ,e. ]
&¥. ,Qo ,00125 e+Qﬂ,
&ue 15625 e+@1,@, sRe R

. &Qo 900 ’OO ’
ér- &Q. y e y3e /
: data ((b(i,J3),1i=1, 13),J 4,6)/

TR T, Ve :
&@. ,G.15625 e+81,@.25 e+Q@,
&@.11574Q74@74@74de+31,4Q, »$.883333333333333e+41,
&0,212962962962963e+Rd, #.287926829268293e+@1,1. y
g=o2ﬂ7926829268293e+i1 go 1 0o ’
. 1R ’
&d,2 e+Qﬁ,l.24ﬂ74ﬁ74974ﬁ741e+Q1 9.2711111111 1111e+d8,
&0,156444444444444e+@2,8.722962962962963e+@1,R,438634146341463e+11,
&QQ ,Q 438634146341463e+ﬂ1 a. ’

&e. ,a. i.
’ &Q. Q. ,Qo231481481481481e+ﬂ1,

84.222222222222222e+00,4.118888888888888¢+082. §.575925925925926e+@1,
58.367@731787317@7e+@1.4.146341463414634e+@d, 8.352439024390244e+@1/
data ((b(i,J),i=1,13)’J=7y9)/

*'qi P e, M
LSS ("n'% AL
PR U i LEUE VLY.

&Qo ’QO ,QO | 4
b &Q, y Qe y @
h &Q, ' Qe 144“44444444“443091 q. 74444”44444“4446+9',
J% &lo316666666666666e+iﬂ 9.52“243932439324e+ﬁ9,..1“6341“634146346.91
oA &8.,534878048784488e+1d,0, v 8o ’
:“:"\:' &QQ ’Q. ,G. []
S &@. y Qe y 8o ’
N &Q.3 e+@1,0,283333333333333e+01,42,54878@4878a4878e+84,
N &0.7317873176@73171e821,8.,621951219512195e+424, 0, ’
l &t. v 8. y 4. ’
E: &q., L y G ’
ﬁ? &4. y e y#833333333333333e0d1,
¥
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AFIT/GAE/AA/78D-5

&R.274390243992439e+82,0,731707317@73170e#81,8.201219512195122e+0@/

NN data ((b(1,3),121,13),3=218,12)7

o &GQ ,e. ,Q. H
&QQ ’QO ,‘0 ’
&QQ ,QO s e *
&Q. »#.4399243902439@2e+0@,0,146341463414634e+04,
&002926829268292686+OQ,Qo ,Q. ’
%4. 4. a. ;
&8, 1@ 1 Qe R
&QC ,q. ,QO ]
&@. N 14 R
&Q. ,Q. ,a. ’
%, '@, 4. ,
&9. ,QO QGO 14
ke, ,Q. ,1.G e+QQ/
data (ch(i),1i=1,13)/
&a. ,Q. a.
&4, y@e y Qe 3238095238995243+9Q,
&9.2571“2857142857e+69 2.,25714285714285Te+ 41, 1.3214285714228576001
&@.321428571428571egd1,4., ,Q 488@95238@95238ea81,

&6.488095238095238enﬂ1/
data erps,tol,tolt/1.Qen@6,1,.8cq@3,1.0ec084/
t=t1

1@ do 2@ i=1,n

2Q xdum(i)=x(1)

“y if(iprint.eq.@) call printr(x,t,tc)
(} call deriv(x,t,tc,f1)

if(iprint.eq.®) call hamilt(t,x,f1,h)
if(t.eq.tZ.or.dt.eq.Q.Q) go to 25@

3@ continue
b21=b(2,1)*dt
do 42 i=z1,n

42 x(1)=b21*£f1(1i)+xdum(i)
call deriv(x,t,tec,f2)
b31=b(3,1)%*dt
b32=b(3,2)*dt
do 43i=1,n

43 x(1)=b31%*f1(1i)+b32*%f2(i)+xdum(i)
call deriv(x,t,te,f3)
bi1=b(4,1)*dt
b43=b (4, 3)“dt

~do 44 i=

44 x(i)= bu1*%1<1>+bu3*f§(1)+xaum(1>
call deriv(x te,fl4
b51=zb(5, 1)*dt

1 b532b(5,3) %at
K} do 45 i=1,
& 45 x(1)=b51*f1(1)+b53*(f3(1)cfu(1))+xdum(i>
4 call deriv(x,t,te,f5)
X b61=b(6,1)*dt
S b6l4=b(6,4)*dt
L b65=b(6,5)*dt
‘ do 46 i=1,n
- 46 x(1)=b61¥#£1(1)+b6U¥LY (1) +b65#F5(1)+xdum( 1)
, 7
4 3
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AFIT/GAE/AA/78D-5

call deriv(x,t,te,f6)
b71=b(7,1)*dt
b74=b(7,4)*dt
b75=b(7,5)*dt
b76=b(7,6)*dt
do 47 i=1,n
U7 x(1)=bT1#£1(1)+bT74*#F4(1)+bT5*F5(1)+bT6*F6(1)+xdum(i)
call deriv(x,t,tec,f7)
b81=b(8,1)*dt
b85=b(8,5)*dt
b86=b(8,6)%*dt
b87=b(8,7)%*dt
do 48 iz1,n
48 x(1)=b8T*fT7(1i)+bB81*F1(1i)+b86*F6(1)+b85*F5(1)+xdum(i)
call deriv(x,t,tc,f8)
b91=b(9,1)*dt
b94=b(9,4)*dt
b95=b(9,5)*dt
b96=b(9,6)*dt
b97=b(9,7)*dt
b98=b(9,8)*dt
do 49 i=z1,n
49 x(1)=b9T*£7(1)+b9I1*¥£1(1)+b9I8*FB(1)+bIU*FU(1i)+bIO*FE( 1)+
&b95*£5(1)+xdum(i)
call deriv(x,t,tc,f9)
b1@1=b(14@,1)*d¢
b1@l=b(1@,4)*dt
b1@5=b(1@,5)*dt
b1@6=b(1@,6)%*dt
b1@87=b(1@,7)%dt
b1@8=b(1@,8)*dt
do 5@ i=1,n
5¢ x(i)=¢b32*f9(i)+b104'f4(1)+b107*f7(i)+b1ﬂ1’f1(i)+b1Q8*f8(i)+
&b1Q6*£6(1)+b1@5%F5(1i)+xdum(1)
call deriv(x,t,tec,f14@)

b111=b(11,1)%dt

b114=b(11,4)%d¢t
b115=b(11,5)*dt

b116=b(11,6)*dt
b117=b(11,7)%*dt
b118=b(11,8)*dt
b119=b{11,9)*dt
b111@=b(11, 1@)*d¢

do 51 i=1,n
FA(1)=b114*f4(1i)+bT115%#F5¢(

+b11TRET(1)+b118%£8(1)+

i)
51 x(1)=b119%*£f9(1)+b111@%*£1Q(1)
i)+xdum(1i)

&b111#£1(1)+FfU(1)+b116#£6(
call deriv(x,t,tc,f11)
b121=b(12,1)*dt
b126=b(12,6)%dt
b128=b(12,8) *dt

do 52 i=1,n
52 x(1)=b121#(f1(1)af7(1))+b128*(£8(1)af9(i))+
&b126*(£f6(1)af18(1))+xdum(i)
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53

call deriv(x,t,tec,f12)

b131=b(13,1)*dt

b136=b(13.6)%dt

b1,7=b(13,7)%*dt

b138=b(13,8)*dt

b139=b(13,9)*dt

b1318=b(13,19)%*dt

do 53 i=1,n
x(1)=b139%£9(1)+b131*£10(1)+b131*¥£1(1)+b137#£7(1)+

&b138#F8(i)+f12(1)*dt+fU(1)+b136*F6(i)+xdum(i)
call deriv(x,t,tc,f13)

cbz=ch(6)*dt

eT7=ch(7)*dt

c9=ch(9)*dt

c12=ch(12)*dt

do 198 i=1,n

VYUK Y

19@ x(1)=xdum(i)+(cORFO(i)+cTR(Ff7T(L)+Ff8(1i))+cOR(FI(1)+Ff15(i))+

11Q

159

2ae

25@

&e12*(£f12(1)+f13(1)))
dt1=d¢t
if(teltete) go to 11¢
call contrl(x,t,te,mu2,mu3,phi,cl,pi)
if(piegeelefeorepiele #@,5) jflag=1
1f(Jflag.eq.1.and.pi.seo1.eeor.pioleo'Q.5) dt=dt1*§,98
if(dt.eqe(A.,98*dt1)) go to 34
if(Jflag.eq.1.and.pi.le.1.9.and.pi.ge.|ﬂ.5> t2=t+dt?
go to 244
er=@,49
do 158 j=1,n
if(abs(x(j))elteerps) go to 154
es=abs((f1()+f11(J)af12(3)ef13(32)/x(3))
if(es.gteer)er=zes
continue
er=er*abs(c12)+1,30429
dt=tolt/er
dt:dt1‘dt"eo125
if(er.gtstol) go to 3@
if(abs(dt) egte@e25) dt=@,25
t=t+dt1
if(abs(dt).gteabs(t2¢t)) dt=t2¢t
go to 18
return
end
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16

subroutine printr(x,t,te)

dimension x(14@)

call contrl(x,t,tc,mu2,mu3,phi,cl,pi)

fpaz=x(6)*57, 295779)1
psiz=x(7)%*57,29577951
bank=phi®*57,29577951

write(5,1@) ¢, (x(i),i:
format(1x,f7, 2(5(1x
return

end
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subroutine hamilt(t,x,f,h)
dimension x(14@),f(14)

h-x(S)*f(1)+x(8)*f(4)+x(2)*f(6)+x(3)*f(7
write(5,1) x(5),f(1),x(8),f(4),x(2),£(6)
1 format(1x,'hamiltonian',3x,q(1x ell, 7) /,5

".V

2x(1)+x(4)%82/2,8/32,174

write(5,2) E

2 format(1x,'specific energy = ',e14,7)

return
end
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AFIT/GAE/AA/78D-5

,% AR subroutine deriv(x,t,te,f)
Pels 7 dimension x(1€),f(1@)
. real k,l,lh,mu2,mu3,nmax
common a,beta,clmax,cdo,g,k,nmax,tmax,w,xid

it

> common clnmax,hfifi,)flag,qa,rosig
BN call contrl(x,t,te,mu2,mu3,phi,cl,pi)
3 lzqatcl
Ry lh=1l*beta

n d=qa*(cdo+ktcl##2)

o dh=d*beta
-\ cosg=cos(x(6))

- sing=sin(x(6))
hess cosszcos(x(7))

oy sinszsin(x(7))

£(1)=x(4)*sing

A £f(7)=g/x(4)/cosg*1l/w¥*sin(phi)

N f(2)=cosg*(g*(x(8)+mu3*(1.84beta*x(4)*#2/2.,2/g))ux(5)*x(4))
o &esing®*x(2)*g/x(4)ax(3)*£(T7)*tan(x(6))
el f(4)=g*((tmax¥*pigd)/wesing)

H £f(5)=g/w*(dh®*(x(8)+mu3)+1lh*(hfifi/x(4)emu2))
40 £(6)=g/x(4)*(1/w*cos(phi)ucosg)
1%& £(8)=2.,8*F(5)/x(4)/beta+(x(2I#F(6)+x(3)*F(7))/x(H)
A &esing*(x(5)+mu3*beta*x(4))
o £(9)=x(4)¥cosg*coss
N . £{18)=x(4)*cosg*sins

& return

2R end
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subroutine contrl(x,t,tec,mu2,mu3,phi,cl,pi)
dimension x(18Q)

real k,l,nmax,mu2,mu3 -
common a,beta,clmax,cdo,g,k,nmax,tmax,w,xiu

common clnmax,hfifi Jflaﬁ,qa rosi
hfifi:sqrt(x(2)'*2+zx(3) cos(x(6)))#*2)
rosig=ﬂ.iﬂ23769*exg(beta'x(1))
qa:G.S’rosi%‘x(U)“ 2%a
phizatan2(a(x(3)/cos(x(6))),e8x(2))
clnmax=2.2%w*nmax/(rosigh*a®x(4)**2
1f(x(8)eltoe@eft) clzahfifi/(2,8%k¥*x
if(x(8)e.geeo@) cl=clmax
if(el.gtesclmax) cl=clmax
if(cle.gteclnmax) cl=clnmax
if(clelt.B.8) cl=@,.®
d=qa%*(cdo+khcl¥¥2)
muz=@,.@
mu3=R.4
if(teltetec) go to 19
piz(d+w¥#sin(x(6))*(1,@abeta*x(4)*%2/2,8/¢))/tmax
mu3=#x(8)
go to 3%
if(cleeqeclnmaxeandeteltetcoandexilagtex(4))
&mu2=2.8%k*x(8)*clnmax+hfifi/x(H4)
14 if(X(B)oeq.eoe) go to 2@
if(X(S)oltoa.Q) pi=1.9
1f(x(8).gt.ﬂ.ﬂ) pi=!ﬂ.5

G go to 3@

20 if(xild.gtex(4)) £1@=a(1.,a/x(4)+x(5)*3in(x(6)))

1f(xileltex(l)) Fl@=2.8%g*hfifi*nmax/x(4)%*2g
&(1.8/x(4)+x(5)*8in(x(6)))
if(f1ﬂ.gt.0.i) pi=1.0
if(f16.1t.ﬂ.0) pi:!ﬁ.5
38 return

end

\155

)
(4)%x(8))
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subroutine ndm
dimension x(14
r(1)=(x(1)¢xié
(
(

I3
-y

[4

r(2)=(x(6)axi

r(3)=(x(7)uxi

r(4)=(x(4)axi

rnorm=@.%

do 1@ i=1,4
1@ rnorm=rnorm+r(i)*r(i)

rnorm=sqrt(rnorm)

return

end

77951%1@,.4
T7951%14,.¢

Vi i Bie §
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i subroutine deltas(x X,tfs,tes,1flag,ii,1ii)
o0 dimension x(14) dx(ﬁ)
dx(1)=x(1)*1,3eqQ5
dx(2)=x(2)%*1,0eedl
dx(3)=tfs*1.0e|03
if(lflageeqe2) dx(3)=x(3)%1,0e80Y
dx(4)=tcs*1 Qe
if(ii.eq.1ooroiioeq.2) x(1i)=x(id)+i1i%dx(11)
if(ii.EQo3.and.lflag.ne.2) tfs:tfs*iii“dX(B)
if(ii.eqe3eandelflageeqe2) x(3)=x(3)+1iii*dx(3)
if(ii.eqeld) tes=tes+iii*dx(4)
return
end
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19
15

2@
25

34

35
4e

N

subroutine mtxinv(a,b,c,
dimension a(n,n),b(n, ) (n,n)
do 5 i=1,n

do 5 J
c(i,

~r ~r
nrE - unNn
-r il N 1P -

J)/estort
J)/cstori

J=Jj+1

if(jeeqeieandeieeqen) go to 4@

if(jeeqei) J=J+1
estor2=c(j,1)

do 3@ k=1,n

e(J,k)= c(J k)gcstor2¥*c(i,k)
b(j,k)=b(j,k)ecstor2*b(i,k)
if(J.ne.n) go to 25
continue

return

end
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Ul &=

174

subroutine search(xf,xi,tf,te,dz,r,rnorm,1lflag,iprint)
dimension xf(1@),x1i(1@),x(1@),r(4),rp(4),rm(4),dz(4)
iter=z=@

choice=q

rnormm=9999999999,

stepi1=1.@

step2=4,618833989

iterat=@

mflag=4@

iter=iter+1
gsr=stepi®*step2#*(itergtigiterat)
write(5,%) iter,gsr

do 2 j3=1,2 '
x(J)=xf(J)+gsr*dz(j)

if(1flageeqe2) x(3)=xf(3)+gsr*dz(3)
do 3 Jj=5,14@

x(3)=xf(3)

tfs=tf

if(1flageeqeleoreslflageeqe3) tfs=tf+gsr*dz(3)
teszte+gsr*dz(4)

if(tese.gtetfs) tes=tfs
if(tcselt.f.8) tcsz@,.8

call assign(x,xi,tf,lflag)

call integ(1@,x,tfs,tecs,1)

call ndmiss(x,xi,rp,rnormp)
if(mflag.eq.1) g0 to 4
if(rnormpelte(1e25¥%rnorm)) mflag=1
if(mflage.eq.@) go to 4

stepi=gsr

step2:2.618@233989

iterat=itergt

write(5,5) tfs,tes,rp,rnormp
format(1x,'tfs,tes,rp,rnormp',/,7(1x,f1@,4))
if(rnormpegternormm) go to 7

do 6 i=1,4

rm(i)=rp(i)

if(rnormps.lternorm) rnormm=rnormp
tesave=tes

if(iter,lte.24) go to 1

testesave

if(te.gtotf) te=tf

if(tcalt.Q.001) te=d,941

call assign(xf,xi,tf,1flag)

do 17# i=1,4

r(i)z=rm(i)

rnormsrnormm

return

end
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